
Kotlin OOP

Download the full Chapter source code from here:
https://drive.google.com/file/d/1tpnZlXR7vaBfdJFVjOEw7x4BoRubKFjk/view?
usp=sharing

In Kotlin all objects inherit from class Any (it has toString, equals & hashCode)
Unlike Java in Kotlin we can combine few public classes in one file

Lets make our first class:

Class student has an empty constructor
s has only the functions from Any
If we want the java setter we set it’s properties as var if we want only
getters they will be val
init function is called in any instance creation - no matter which constructor we
invoked

Please notice that when printing s.first and s.age we use {} meaning it’s actually

a function invocation! Calling the get…
The . Actually invoke the getter that was auto generated
Same as s.age = 80; -> this only ok if age is var and not val because the setter
is invoked
These are Properties

A better way for writing the class - Kotlin way

The init is still called before the initialization

A better way then this (show with auto correction)

This is the primary constructor!

When we add the var or val in the constructor then we set the properties to
the parameters passed to the constructor and there will be default getters and
setters according to the var or val. That is why we see classes that are just one
line with no body

Think of how coding you just saved!

If we want our custom getter and setter we can’t declare the properties in the
constructor but in the class body and provide a custom get() and set(value)
functions
field - reference for the actual value

Because of default parameters we usually don’t need ctor overloading

If age is not passed to the ctor then he will get the default value

Please note that If you supply one value, it’s used for the first named parameter
(you can use parameters name to overcome this) so it generally doesn’t make
any sense to provide a default value for an early parameter without providing a
default for subsequent parameters.

If you’re not going to provide default values for all parameters, you should only
provide default values for the last parameters in the constructor:

In this case you need to specify the second parameter by his name

If for some reason we want the java way or you want a whole new constructor
all together you can create another one it is called secondary constructor. We
can do it using the constructor keyword (in the primary ctor the keyword is
deferred). We can delegate to the primary constructor

In this case if we create a Student with name alone he will be 40 and not 20!
The system will always look for the exact constructor before applying default
values!.

private constructor
To avoid the public constructor in cases such as singletons add the private
constructor() after the class declaration or inside the class body - better as
primary constructor (in the class declaration)

lateinit var
Some variables needs to initialize later we can use the lateinit var

In this case the compiler won’t show the compilation error of the var not being
initialize BUT be careful from accessing the variable -
UninitializedPropertyAccessException will be thrown at runtime

Only lateinit var exist not val (the lateinit gives it some initial value) and it’s not
working on all the Java primitives(Int, Double, Char…).

Delegated properties
Another way of late initialization is using delegated properties: we will
create an object that when we first access it’s properties the delegate
object is created and store the value computed in the object. This can also
work on java primitives.

The syntax is: val/var <property name>: <Type> by <expression>

The expression after by is a delegate. The get() and set() corresponding to the
property that will be delegated to its getValue() and setValue() methods.
Property delegates doesn’t have to implement any interface, but they have to
provide a getValue() function (and setValue()--- for var s).

If we are want val or one the java primitives to get a later value we can use this
delegate:

But again be careful from accessing it before initialization
Take a look at his code:

Another option is using the lazy function
The lazy function will be invoked only when the object id accessed for the fist
time

The println is used to show you that the initialization is happening only when
first accessed

Another example in using observable delegates
Delegates.observable - Returns a property delegate for a read/write property
that calls a specified callback function when changed.

If you want to intercept assignments and veto them, use vetoable() instead of
observable(). The handler passed to the vetoable is called before the
assignment of a new property value.

You read more about the concept of Delegates and maybe create your own
here:
https://kotlinlang.org/docs/delegated-properties.html
And of course on in this course we will have our own delegate that changes the
property value according the the attached fragment lifecycle.

Class extensions
We can add functions to existing classes in Kotlin using the class name before
the function name.

Inside the function we have this

Data class

Using the keyword data we can use Kotlin to create everything needed for a
data class - equals, hash-code, toString, copy and more (a Whole file in java is
just one line)

In Data classes a componentN function is created for each the the properties.
We can use this for destructuring declaration

Destructuring declarations
A destructuring declaration creates multiple variables at once(only local
variables).

If you don't need a variable in the destructuring declaration, you can place an
underscore instead of its name:

The restructuring declaration can also help us in a variety for other things, for
example when iterating on a map objects

They are also used for function calls that we want to return more then one value
and no need for the wrapper object

Inheritance

The derived class doesn’t need to add val or var to arguments already defined
in the parent class.

Inheritance is defined by :

All Kotlin classes are final by default! This is mainly because almost no one
wrote final in java
When we want to inherit form a class it must be declared as open
All the function that we want to override must be open

In Kotlin we can also override the class properties in cases where we want to
add a setter for the child or write a different get and set functions.
If the property is val in the parent class in the derived class it can be either var
or val - just add a setter - but if it var in parent class it can’t be val in the child
- we can’t vanish the setter it already has one.

This is an error - we can’t hide the parent name but we can override it and add
a setter and a different default value

We can also change the parents getter function:

Overriding methods always use the same default parameter values as the base
method.
When overriding a method that has default parameter values, the default
parameter values must be omitted from the signature

It make more sense for Shape to be abstract - the area function needs to be
abstract
No need for open when using the abstract keyword same in functions or in
classes

Casting(is, as and as?)
Kotlin can smart-cast our objects if we check them before using is -Note that
smart casts work only when the compiler can guarantee that the variable won't

change between the check and the usage so it always works on val but only on
var local properties(the compiler can track the local variables)

If we want to cast the object ourselves we can use the unsafe as operator -
Usually, the cast operator throws an exception if the cast isn't possible. And so,
it's called unsafe. The unsafe cast in Kotlin is done by the infix operator as.

Or if you want to avoid exceptions, use the safe cast operator as?, which
returns null on failure.

For more reasons adding on Type check and castings
https://kotlinlang.org/docs/typecasts.html#type-erasure-and-generic-type-
checks

Interfaces

Until now it was the same as Java but:
Interfaces in Kotlin can contain properties (without initialization) but when
implementing it we must override it

We can also define a default function implementation and in that case we don’t
have to override it. But that can cause the diamond problem and we solve it
using the <[which]>

This is ok

But if Shape has fill and also there is a default implementation in the interface
which fill will be called and we solve it using <[parent]>

Object Expressions and Declarations

Object expressions create objects of anonymous classes, that is, classes that
aren't explicitly declared with the class declaration - with a specific name. Such
classes are useful for one-time use. You can define them from scratch, inherit
from existing classes, or implement interfaces. Instances of anonymous classes
are also called anonymous objects because they are defined by an expression,
not a name - Anonymous inner classes

Like in java Anonymous class can access outside class members

N
When only one function exist in the interface (SAM - Single Abstract Method)
we will use Lambda and not object expression(will be discussed later on).

Another simple example :

Object declarations
Object declaration always has a name following the object keyword. Just like a
variable declaration, an object declaration is not an expression, and it cannot
be used on the right-hand side of an assignment statement.

The initialization of an object declaration is thread-safe and done on first
access. To refer to the object, use its name directly.

Kotlin makes it easy to declare singletons using object declaration:

Please note the because this is an object declaration it has no constructor and
there is only one instance so it already a singleton!

However, this is ok (this is just giving the object a different reference):

Such objects can have super-types and we can create a non anonymous single
implementation

Companion objects
An object declaration inside a class can be marked with the companion
keyword
This replaces the java statics.
Only one instance of the companion object is created for all instances of the
class - it is an object - one per class like the static initializer - when we load
the class to the memory for the first time then the companion object is created
for all the upcoming instances that will share it.

Please note that it must be an object and inside it we will declare both
properties and functions

The default companion object name is Companion but we don’t need to specify

●

●

it just use the class name, you can also give the companion object a name but
that is truly unnecessary

If you have only one companion object you can still access it with the class
name. And since each class is allowed only one companion object the naming is
quite unnecessary and use it only if it makes your code more organized.

If you need the companion object itself just use the class name (or if it has a
name - his name)

Note that even though the members of companion objects look like static
members in other languages, at runtime those are still instance members of real
objects, and can, for example, implement interfaces:

However, on the JVM you can have members of companion objects generated
as real static methods and fields if you use the @JvmStatic annotation. See the
Java interoperability section for more detail.

There is one important semantic difference between object expressions and
object declarations:

Object expressions are executed (and initialized) immediately, where
they are used.
Object declarations are initialized lazily, when accessed for the first

●

●
time.
A companion object is initialized when the corresponding class is
loaded (resolved) that matches the semantics of a Java static
initializer.

For more reading:
https://kotlinlang.org/docs/object-declarations.html#using-anonymous-
objects-as-return-and-value-types

Functional (SAM) interfaces
An interface with only one abstract method is called a functional interface, or a
Single Abstract Method (SAM) interface. The SAM interface can only have one
abstract method. To declare SAM interface use the keyword fun before the
interface

The main advantage:
Instead of creating a class that implements a functional interface manually, you
can use a lambda expression. With a SAM conversion, Kotlin can convert any
lambda expression whose signature matches the signature of the interface's
single method into the code, o
For example
Take the following interface:

If you don't use a SAM conversion, you will need to write code like this:
// Creating an instance of a class

By leveraging Kotlin's SAM conversion, you can write the following equivalent
code instead:
// Creating an instance using lambda

And in main function:

You will use this allot in Android programming just think of the OnClickListener
interface, isn’t it SAM?

Nested and inner classes

In Kotlin like in Java we can nest a class within another class (this is simply a
structural thing):

Note that Nested can’t access bar.

You can make a nested class Inner using the inner keyword before the class
declaration.
A nested class marked as inner can access the members of its outer class!

Inner classes carry a reference to an object of an outer class. In nested class
we don’t need to create an instance of the outer class just use it’s name (like
we said before it’s a structural thing). But if it is an inner class we must create
an instance of the outer class to get and instance of the Inner class:

Access Modifiers
private - same as java
public - the default in Kotlin!
protected - same as java
internal - equivalent to java package level - same Module - a set of Kotlin files
compiling together - In android same Gradle or Maven

We can use as keyword for direct name for imported classes

Generics - covariance and contravarince
In case we want to define a generic class and later narrow the generic type (we
used ? Extend Object in java) this is a problem since we set a more specific
type of the generic, and we can add things at compile time that will crash at
runtime!

The problem is that in the reference he accepts wider objects then in runtime

We can use the out keyword next to the generic to specify the T will only be
used as return value - and the problem solved - covariance - because if it will
be used only as a return value then the user won’t be able to cause the problem
mentioned before.

Same in the opposite direction - we can specify the keyword in for generics
that will only we used as parameter - think of a getter that suppose to return
String but actually return Any - this is a problem! but think of a setter that
suppose to get String and get Any - this is no problem - contra variance

Its also possible to define both:

sealed
Sealed classes and interfaces represent restricted class hierarchies that
provide more control over inheritance. All direct subclasses of a sealed class
are known at compile time. No other subclasses may appear after a module
with the sealed class is compiled. For example, third-party clients can't extend
your sealed class in their code. Thus, each instance of a sealed class has a type
from a limited set that is known when this class is compiled.
This is very useful when checking instances of a curtain class with when()
because first if we choked all known subclasses then we don’t need else and
more then that the compiler warnings that tells us that we forget to check a
curtain subclass can save us allot debugging time.

A sealed class is abstract by itself, it cannot be instantiated directly and can
have abstract members.
Direct subclasses of sealed classes and interfaces must be declared in the
same package.

https://kotlinlang.org/docs/sealed-classes.html#sealed-classes-and-when-
expression

